Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Inflammopharmacology ; 31(3): 1167-1182, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2257642

RESUMEN

The "Thalidomide tragedy" is a landmark in the history of the pharmaceutical industry. Despite limited clinical trials, there is a continuous effort to investigate thalidomide as a drug for cancer and inflammatory diseases such as rheumatoid arthritis, lepromatous leprosy, and COVID-19. This review focuses on the possibilities of targeting inflammation by repurposing thalidomide for the treatment of idiopathic pulmonary fibrosis (IPF). Articles were searched from the Scopus database, sorted, and selected articles were reviewed. The content includes the proven mechanisms of action of thalidomide relevant to IPF. Inflammation, oxidative stress, and epigenetic mechanisms are major pathogenic factors in IPF. Transforming growth factor-ß (TGF-ß) is the major biomarker of IPF. Thalidomide is an effective anti-inflammatory drug in inhibiting TGF-ß, interleukins (IL-6 and IL-1ß), and tumour necrosis factor-α (TNF-α). Thalidomide binds cereblon, a process that is involved in the proposed mechanism in specific cancers such as breast cancer, colon cancer, multiple myeloma, and lung cancer. Cereblon is involved in activating AMP-activated protein kinase (AMPK)-TGF-ß/Smad signalling, thereby attenuating fibrosis. The past few years have witnessed an improvement in the identification of biomarkers and diagnostic technologies in respiratory diseases, partly because of the COVID-19 pandemic. Hence, investment in clinical trials with a systematic plan can help repurpose thalidomide for pulmonary fibrosis.


Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Humanos , Talidomida/uso terapéutico , Talidomida/metabolismo , Talidomida/farmacología , Pandemias , COVID-19/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Inflamación/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Pulmón
2.
Viruses ; 15(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2200876

RESUMEN

The coronavirus disease (COVID-19) is a pandemic that started in the City of Wuhan, Hubei Province, China, caused by the spread of coronavirus (SARS-CoV-2). Drug discovery teams around the globe are in a race to develop a medicine for its management. It takes time for a novel molecule to enter the market, and the ideal way is to exploit the already approved drugs and repurpose them therapeutically. We have attempted to screen selected molecules with an affinity towards multiple protein targets in COVID-19 using the Schrödinger suit for in silico predictions. The proteins selected were angiotensin-converting enzyme-2 (ACE2), main protease (MPro), and spike protein. The molecular docking, prime MM-GBSA, induced-fit docking (IFD), and molecular dynamics (MD) simulations were used to identify the most suitable molecule that forms a stable interaction with the selected viral proteins. The ligand-binding stability for the proteins PDB-IDs 1ZV8 (spike protein), 5R82 (Mpro), and 6M1D (ACE2), was in the order of nintedanib > quercetin, nintedanib > darunavir, nintedanib > baricitinib, respectively. The MM-GBSA, IFD, and MD simulation studies imply that the drug nintedanib has the highest binding stability among the shortlisted. Nintedanib, primarily used for idiopathic pulmonary fibrosis, can be considered for repurposing for us against COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulación del Acoplamiento Molecular , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19 , Simulación de Dinámica Molecular , Antivirales/uso terapéutico , Antivirales/química , Reposicionamiento de Medicamentos
3.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1367851

RESUMEN

Unfortunately, COVID-19 is still a threat to humankind and has a dramatic impact on human health, social life, the world economy, and food security. With the limited number of suggested therapies under clinical trials, the discovery of novel therapeutic agents is essential. Here, a previously identified anti-SARS-CoV-2 compound named Compound 13 (1,2,5-Oxadiazole-3-carboximidic acid, 4,4'-(methylenediimino) bis,bis[[(2-hydroxyphenyl)methylene]hydrazide) was subjected to an iterated virtual screening against SARS-CoV-2 Mpro using a combination of Ligand Designer and PathFinder. PathFinder, a computational reaction enumeration tool, was used for the rapid generation of enumerated structures via default reaction library. Ligand designer was employed for the computerized lead optimization and selection of the best structural modification that resulted in a favorable ligand-protein complex. The obtained compounds that showed the best binding to Mpro were re-screened against TMPRSS2, leading to the identification of 20 shared compounds. The compounds were further visually inspected, which resulted in the identification of five shared compounds M1-5 with dual binding affinity. In vitro evaluation and enzyme inhibition assay indicated that M3, an analogue of Compound 13 afforded by replacing the phenolic moiety with pyridinyl, possesses an improved antiviral activity and safety. M3 displayed in vitro antiviral activity with IC50 0.016 µM and Mpro inhibition activity with IC50 0.013 µM, 7-fold more potent than the parent Compound 13 and potent than the antivirals drugs that are currently under clinical trials. Moreover, M3 showed potent activity against human TMPRSS2 and furin enzymes with IC50 0.05, and 0.08 µM, respectively. Molecular docking, WaterMap analysis, molecular dynamics simulation, and R-group analysis confirmed the superiority of the binding fit to M3 with the target enzymes. WaterMap analysis calculated the thermodynamic properties of the hydration site in the binding pocket that significantly affects the biological activity. Loading M3 on zinc oxide nanoparticles (ZnO NPs) increased the antiviral activity of the compound 1.5-fold, while maintaining a higher safety profile. In conclusion, lead optimized discovery following an iterated virtual screening in association with molecular docking and biological evaluation revealed a novel compound named M3 with promising dual activity against SARS-CoV-2. The compound deserves further investigation for potential clinical-based studies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Inhibidores de Proteasas/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Proteasas 3C de Coronavirus/metabolismo , Pruebas de Enzimas , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Serina Endopeptidasas/metabolismo
4.
Eur J Pharmacol ; 896: 173922, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1252813

RESUMEN

The coronavirus disease (COVID-19) is spreading between human populations mainly through nasal droplets. Currently, the vaccines have great hope, but it takes years for testing its efficacy in human. As there is no specific drug treatment available for COVID-19 pandemic, we explored in silico repurposing of drugs with dual inhibition properties by targeting transmembrane serine protease 2 (TMPRSS2) and human angiotensin-converting enzyme 2 (ACE2) from FDA-approved drugs. The TMPRSS2 and ACE2 dual inhibitors in COVID-19 would be a novel antiviral class of drugs called "entry inhibitors." For this purpose, approximately 2800 US-FDA approved drugs were docked using a virtual docking tool with the targets TMPRSS2 and ACE2. The best-fit drugs were selected as per docking scores and visual outcomes. Later on, drugs were selected on the basis of molecular dynamics simulations. The drugs alvimopan, arbekacin, dequalinum, fleroxacin, lopinavir, and valrubicin were shortlisted by visual analysis and molecular dynamics simulations. Among these, lopinavir and valrubicin were found to be superior in terms of dual inhibition. Thus, lopinavir and valrubicin have the potential of dual-target inhibition whereby preventing SARS-CoV-2 entry to the host. For repurposing of these drugs, further screening in vitro and in vivo would help in exploring clinically.


Asunto(s)
Enzima Convertidora de Angiotensina 2/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19 , COVID-19 , Doxorrubicina/análogos & derivados , Lopinavir/farmacología , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , COVID-19/metabolismo , Doxorrubicina/farmacología , Reposicionamiento de Medicamentos , Inhibidores Enzimáticos/clasificación , Inhibidores Enzimáticos/farmacología , Humanos , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Inhibidores de Topoisomerasa II/farmacología
5.
F1000Res ; 9: 1166, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-934653

RESUMEN

Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), took more lives than combined epidemics of SARS, MERS, H1N1, and Ebola. Currently, the prevention and control of spread are the goals in COVID-19 management as there are no specific drugs to cure or vaccines available for prevention. Hence, the drug repurposing was explored by many research groups, and many target proteins have been examined. The major protease (M pro), and RNA-dependent RNA polymerase (RdRp) are two target proteins in SARS-CoV-2 that have been validated and extensively studied for drug development in COVID-19. The RdRp shares a high degree of homology between those of two previously known coronaviruses, SARS-CoV and MERS-CoV. Methods: In this study, the FDA approved library of drugs were docked against the active site of RdRp using Schrodinger's computer-aided drug discovery tools for in silico drug-repurposing. Results: We have shortlisted 14 drugs from the Standard Precision docking and interaction-wise study of drug-binding with the active site on the enzyme. These drugs are antibiotics, NSAIDs, hypolipidemic, coagulant, thrombolytic, and anti-allergics. In molecular dynamics simulations, pitavastatin, ridogrel and rosoxacin displayed superior binding with the active site through ARG555 and divalent magnesium. Conclusion: Pitavastatin, ridogrel and rosoxacin can be further optimized in preclinical and clinical studies to determine their possible role in COVID-19 treatment.


Asunto(s)
Antivirales , Infecciones por Coronavirus/tratamiento farmacológico , Reposicionamiento de Medicamentos , Neumonía Viral/tratamiento farmacológico , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/enzimología , COVID-19 , Dominio Catalítico , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Ácidos Pentanoicos/farmacología , Piridinas/farmacología , Quinolinas/farmacología , Quinolonas/farmacología , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
6.
Arch Med Res ; 52(1): 38-47, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-773866

RESUMEN

BACKGROUND AND AIMS: Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) induced Novel Coronavirus Disease (COVID-19) has currently become pandemic worldwide. Though drugs like remdesivir, favipiravir, and dexamethasone found beneficial for COVID-19 management, they have limitations clinically, and vaccine development takes a long time. The researchers have reported key proteins which could act as druggable targets. Among them, the major protease Mpro is first published, plays a prominent role in viral replication and an attractive drug-target for drug discovery. Hence, to target Mpro and inhibit it, we accomplished the virtual screening of US-FDA approved drugs using well-known drug repurposing approach by computer-aided tools. METHODS: The protein Mpro, PDB-ID 6LU7 was imported to Maestro graphical user interphase of Schrödinger software. The US-FDA approved drug structures are imported from DrugBank and docked after preliminary protein and ligand preparation. The drugs are shortlisted based on the docking scores in the Standard Precision method (SP-docking) and then based on the type of molecular interactions they are studied for molecular dynamics simulations. RESULTS: The docking and molecular interactions studies, five drugs emerged as potential hits by forming hydrophilic, hydrophobic, electrostatic interactions. The drugs such as arbutin, terbutaline, barnidipine, tipiracil and aprepitant identified as potential hits. Among the drugs, tipiracil and aprepitant interacted with the Mpro consistently, and they turned out to be most promising. CONCLUSIONS: This study shows the possible exploration for drug repurposing using computer-aided docking tools and the potential roles of tipiracil and aprepitant, which can be explored further in the treatment of COVID-19.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Reposicionamiento de Medicamentos/métodos , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/enzimología , Antivirales/química , Antivirales/farmacología , COVID-19/virología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular/métodos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA